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Abstract. We introduce the notion of Killing shape operator for real
hypersurfaces in the complex quadric Qm = SOm+2/SOmSO2. The
Killing shape operator condition implies that the unit normal vector
field N becomes A-principal or A-isotropic. Then according to each
case, we give a complete classification of Hopf real hypersurfaces in
Qm = SOm+2/SOmSO2 with Killing shape operator.
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1. Introduction

When we consider some Hermitian symmetric spaces of rank 2, we can usu-
ally give examples of Riemannian symmetric spaces SUm+2/S(U2Um) and
SU2,m/S(U2Um), which are said to be complex two-plane Grassmannians
and complex hyperbolic two-plane Grassmannians, respectively (see [15–17]).
These are viewed as Hermitian symmetric spaces and quaternionic Kähler
symmetric spaces equipped with the Kähler structure J and the quaternionic
Kähler structure J.

In the complex projective space CPm+1 and the quaternionic projective
space QPm+1, some classifications of real hypersurfaces related to commut-
ing Ricci tensor were investigated by Kimura [9], and Pérez and Suh [11,12]
respectively. The classification problems of real hypersurfaces in the complex
2-plane Grassmannian G2(Cm+2) = SUm+2/S(U2Um) with certain geomet-
ric conditions were mainly discussed in Jeong et al. [2], Jeong et al. [3,4],
Suh [15–17], where the classification of contact hypersurfaces, parallel Ricci
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tensor, harmonic curvature and structure Jacobi operator of a real hyper-
surface in G2(Cm+2) were extensively studied. Moreover, in [17] we have
asserted that the Reeb flow on a real hypersurface in SU2,m/S(U2Um) is iso-
metric if and only if M is an open part of a tube around a totally geodesic
SU2,m−1/S(U2Um−1) ⊂ SU2,m/S(U2Um).

As another kind of Hermitian symmetric space with rank 2 of compact
type different from the above ones, we can consider the example of complex
quadric Qm = SOm+2/SOmSO2, which is a complex hypersurface in complex
projective space CPm+1 (see Klein [5,6,8] and Smyth [14]). The complex
quadric can also be regarded as a kind of real Grassmann manifold of compact
type with rank 2 (see Kobayashi and Nomizu [10]). Accordingly, the complex
quadric admits two important geometric structures, an S1-bundle A of real
structures and a Kähler structure J , which anti-commute with each other,
that is, AJ = −JA for every A∈A. Then for m≥2 the triple (Qm, J, g) is
a Hermitian symmetric space of compact type with rank 2 and its maximal
sectional curvature is equal to 4 (see Klein [5,7] and Reckziegel [13]). This
geometric structure determines a maximal A-invariant subbundle Q of the
tangent bundle TM of a real hypersurface M in Qm.

Moreover, the derivative of the complex conjugation A on Qm is defined
by

(∇̄XA)Y = q(X)JAY

for any vector fields X and Y on M , where q denotes a certain 1-form defined
on M .

When the shape operator S of M in Qm satisfies (∇XS)Y = (∇Y S)X
for any X,Y tangent to M in Qm, we say that the shape operator is of
Codazzi type. In [18] we gave a non-existence result on such real hypersurfaces
as follows:

Theorem A. There do not exist any real hypersurfaces in complex quadric
Qm, m≥3, with shape operator of Codazzi type.

Recall that a nonzero tangent vector W ∈ T[z]Q
m is called singular if

it is tangent to more than one maximal flat in Qm. There are two types of
singular tangent vectors for the complex quadric Qm:

1. If there exists a conjugation A ∈ A such that W ∈ V (A) := Eig(A, 1),
then W is called A-principal.

2. If there exist a conjugation A ∈ A and orthonormal vectors X,Y ∈ V (A)
such that W/||W || = (X + JY )/

√
2, then W is called A-isotropic.

When we consider a hypersurface M in the complex quadric Qm, under
the assumption of some geometric properties, the unit normal vector field N
of M in Qm is either A-isotropic or A-principal (see [18,19]). In the first case,
where N is A-isotropic, we have shown in Suh [18] that M is locally congruent
to a tube over a totally geodesic CP k in Q2k. In the second case, when the
unit normal N is A-principal, we proved that a contact hypersurface M in
Qm is locally congruent to a tube over a totally geodesic and totally real
submanifold Sm in Qm (see [19]).



MJOM Real Hypersurfaces with Killing Shape Operator... Page 3 of 15  6 

The shape operator S of M in Qm is said to be Killing if the operator
S satisfies

(∇XS)Y + (∇Y S)X = 0

for any X,Y ∈TzM , z∈M . The equation is equivalent to (∇XS)X = 0 for
any X∈TzM , z∈M , because of linearization. The geometric meaning of this
condition is as follows:

Consider a geodesic γ with initial conditions γ(0) = z and γ̇(0) = X.
Then the transformed vector field Sγ̇ is Levi-Civita parallel along the geodesic
γ of the vector field X (see Blair [1] and Tachibana [21]).

When we consider a real hypersurface in the complex quadric Qm with
Killing shape operator, we can assert

Main Theorem 1. Let M be a Hopf real hypersurface in Qm, m≥3, with
Killing shape operator. Then the unit normal vector field N is A-isotropic.

Then, motivated by such result, we give a complete classification for
real hypersurfaces in the complex quadric Qm with Killing shape operator as
follows:

Main Theorem 2. Let M be a Hopf real hypersurface in the complex quadric
Qm, m≥4, with Killing shape operator. Then M has 4 distinct constant prin-
cipal curvatures given by

α �=0, β = γ = 0, λ =
(α2 + 1) +

√
(α2 + 1)2 + 2α2

2α
, and

μ =
(α2 + 1) − √

(α2 + 1)2 + 2α2

2α

whose corresponding principal curvature spaces are

Tα = [ξ], Tβ = [AN ], Tγ = [Aξ], φ(Tλ) = Tμ, and dim Tλ = dim Tμ = m − 2.

Remark 1.1. Usually, the Killing shape operator is a generalization of the
parallel shape operator S of M in Qm , that is, ∇XS = 0 for any tangent
vector field X on M . The parallelism of shape operator has a geometrical
meaning that every eigen space of the shape operator S is parallel in any
direction on M in Qm. Then naturally, by the equation of Codazzi in Section
3, we can prove easily that there do not exist any Hopf real hypersurface in
Qm, m≥3, with parallel shape operator (see [18]).

2. The Complex Quadric

For more background to this section, we refer to [5,10,13,18–20]. The com-
plex quadric Qm is the complex hypersurface in CPm+1 which is defined
by the equation z20 + · · · + z2m+1 = 0, where z0, . . . , zm+1 are homogeneous
coordinates on CPm+1. We equip Qm with the Riemannian metric g which
is induced from the Fubini–Study metric ḡ on CPm+1 with constant holo-
morphic sectional curvature 4. The Fubini–Study metric ḡ is defined by
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ḡ(X,Y ) = Φ(JX, Y ) for any vector fields X and Y on CPm+1 and a glob-
ally closed (1, 1)-form Φ given by Φ = −4i∂∂̄logfj on an open set Uj =
{[z0, . . . , zj , . . . , zm+1]∈CPm+1|zj �=0}, where the function fj is given by fj =∑m+1

k=0 tkj t̄kj , and tkj = zk

zj
for j, k = 0, . . .,m + 1. Naturally, the Kähler struc-

ture on CPm+1 induces canonically a Kähler structure (J, g) on the complex
quadric Qm.

The complex projective space CPm+1 is a Hermitian symmetric space
of the special unitary group SUm+2, namely CPm+1 = SUm+2/S(Um+1U1).
We denote by o = [0, . . . , 0, 1] ∈ CPm+1 the fixed point of the action of
the stabilizer S(Um+1U1). The special orthogonal group SOm+2 ⊂ SUm+2

acts on CPm+1 with cohomogeneity one. The orbit containing o is a totally
geodesic real projective space RPm+1 ⊂ CPm+1. The second singular orbit
of this action is the complex quadric Qm = SOm+2/SOmSO2. This homo-
geneous space model leads to the geometric interpretation of the complex
quadric Qm as the Grassmann manifold G+

2 (Rm+2) of oriented 2-planes in
R

m+2. It also gives a model of Qm as a Hermitian symmetric space of rank
2. The complex quadric Q1 is isometric to a sphere S2 with constant curva-
ture, and Q2 is isometric to the Riemannian product of two 2-spheres with
constant curvature. For this reason, we will assume m ≥ 3 from now on.

In addition, the complex projective space CPm+1 is defined using the
Hopf fibration

π : S2m+3→CPm+1, z→[z],

which is a Riemannian submersion. Then, we can consider the following dia-
gram for the complex quadric Qm:

Q̃ = π−1(Q) ĩ−−−−→ S2m+3⊂C
m+2

π

⏐⏐� π

⏐⏐�

Q = Qm i−−−−→ CPm+1

The submanifold Q̃ of codimension 2 in S2m+3 is called the Stiefel man-
ifold of orthonormal 2-frames in R

m+2, which is given by

Q̃ = {x + iy∈Cm+2|g(x, x) = g(y, y) =
1
2

and g(x, y) = 0},

where g(x, y) =
∑m+2

i=1 xiyi for any x = (x1, . . ., xm+2) and y = (y1, . . ., ym+2)
∈Rm+2. Then, the tangent space is decomposed as TzS

2m+3 = Hz⊕Fz and
TzQ̃ = Hz(Q)⊕Fz(Q) at z = x + iy∈Q̃ respectively, where the horizontal
subspaces Hz and Hz(Q) are given by Hz = (Cz)⊥ and Hz(Q) = (Cz⊕Cz̄)⊥,
and Fz = Fz(Q) = Riz is the tangent space to the fiber S1·z of π through the
point z. Here Hz(Q) is a subspace of Hz of real codimension 2 and orthogonal
to the two unit normals −z̄ and −Jz̄. Explicitly, at the point z = x + iy∈Q̃
it can be described as

Hz = {u + iv∈Cm+2| g(x, u) + g(y, v) = 0, g(x, v) = g(y, u)}
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and

Hz(Q) = {u + iv∈Hz| g(u, x) = g(u, y) = g(v, x) = g(v, y) = 0},

where C
m+2 = R

m+2⊕iRm+2, and g(u, x) =
∑m+2

i=1 uixi for any u = (u1, . . .,
um+2), x = (x1, . . ., xm+2)∈Rm+2.

These spaces can be naturally projected by the differential map π∗ as
π∗Hz = Tπ(z)CPm+1 and π∗Hz(Q) = Tπ(z)Q respectively. This gives that
at the point π(z) = [z], the tangent subspace T[z]Q

m becomes a complex
subspace of T[z]CPm+1 with complex codimension 1 and has two unit normal
vector fields −z̄ and −Jz̄ (see Reckziegel [13]).

Then let us denote by Az̄ the shape operator of Qm in CPm+1 with
respect to the unit normal z̄. It is defined by Az̄w = ∇̄wz̄ = w̄ for a complex
Euclidean connection ∇̄ induced from C

m+2 and all w ∈ T[z]Q
m. That is,

the shape operator Az̄ is just a complex conjugation restricted to T[z]Q
m.

Moreover, it satisfies the following for any w ∈ T[z]Q
m and any λ∈S1⊂C

A2
λz̄w = Aλz̄Aλz̄w = Aλz̄λw̄

= λAz̄λw̄ = λ∇̄λw̄z̄ = λλ̄̄̄w

= |λ|2w = w.

Accordingly, A2
λz̄ = I for any λ∈S1. Thus, the shape operator Az̄ becomes an

anti-commuting involution such that A2
z̄ = I and AJ = −JA on the complex

vector space T[z]Q
m and

T[z]Q
m = V (Az̄) ⊕ JV (Az̄),

where V (Az̄) = R
m+2∩T[z]Q

m is the (+1)-eigenspace and JV (Az̄) = iRm+2∩
T[z]Q

m is the (−1)-eigenspace of Az̄. That is, Az̄X = X and Az̄JX = −JX,
respectively, for any X∈V (Az̄).

Geometrically, this means that the shape operator Az̄ defines a real
structure on the complex vector space T[z]Q

m, or equivalently, is a complex
conjugation on T[z]Q

m. Since the real codimension of Qm in CPm+1 is 2,
this induces an S1-subbundle A of the endomorphism bundle End(TQm)
consisting of complex conjugations.

There is a geometric interpretation of these conjugations. The com-
plex quadric Qm can be viewed as the complexification of the m-dimensional
sphere Sm. Through each point [z] ∈ Qm there exists a one-parameter family
of real forms of Qm which are isometric to the sphere Sm. These real forms
are congruent to each other under action of the center SO2 of the isotropy
subgroup of SOm+2 at [z]. The isometric reflection of Qm in such a real
form Sm is an isometry, and the differential at [z] of such a reflection is a
conjugation on T[z]Q

m. In this way the family A of conjugations on T[z]Q
m

corresponds to the family of real forms Sm of Qm containing [z], and the
subspaces V (A) ⊂ T[z]Q

m correspond to the tangent spaces T[z]S
m of the

real forms Sm of Qm.
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The Gauss equation for Qm ⊂ CPm+1 implies that the Riemannian
curvature tensor R̄ of Qm can be described in terms of the complex structure
J and the complex conjugations A ∈ A:

R̄(X, Y )Z = g(Y, Z)X − g(X, Z)Y + g(JY, Z)JX − g(JX, Z)JY − 2g(JX, Y )JZ

+ g(AY, Z)AX − g(AX, Z)AY + g(JAY, Z)JAX − g(JAX, Z)JAY.

Note that J and each complex conjugation A anti-commute, that is, AJ =
−JA for each A ∈ A.

For every unit tangent vector W ∈ T[z]Q
m there exist a conjugation

A ∈ A and orthonormal vectors X,Y ∈ V (A) such that

W = cos(t)X + sin(t)JY

for some t ∈ [0, π/4]. The singular tangent vectors correspond to the values
t = 0 and t = π/4. When W = X for X∈V (A), t = 0, X is contained in all
2-flats RX +RJZ with Z∈V (A) orthogonal to X. So the tangent vector X is
said to be singular. When W = (X + JY )/

√
2 for t = π

4 , it is also a singular
tangent vector, which belongs to all 2-flats RX̃ + RJỸ , where

X̃ =
1 + λ

2
X +

1 − λ

2
JY

and

Ỹ = −1 − λ

2
JX +

1 + λ

2
Y

for some λ∈S1. If 0 < t < π
4 then the unique maximal flat containing W is

RX ⊕ RJY .

3. Some General Equations

Let M be a real hypersurface in Qm and denote by (φ, ξ, η, g) the induced
almost contact metric structure. Note that the Reeb vector field of M is given
by ξ = −JN , where N is a (local) unit normal vector field of M and η the
corresponding 1-form defined by η(X) = g(ξ,X) for any tangent vector field
X on M . The tangent bundle TM of M splits orthogonally into TM = C⊕Rξ,
where C = ker(η) is the maximal complex subbundle of TM . The structure
tensor field φ, which is defined by φX = JX−η(X)N , restricted to C coincides
with the complex structure J restricted to C, and φξ = 0.

At each point z ∈ M we define a maximal A-invariant subspace of TzM ,
z∈M as follows:

Qz = {X ∈ TzM | AX ∈ TzM for all A ∈ Az}.

Then we introduce an important lemma which will be used in the proof
of our main Theorem in the introduction.

Lemma 3.1. [18] For each z ∈ M we have
(i) If Nz is A-principal, then Qz = Cz.
(ii) If Nz is not A-principal, there exist a conjugation A ∈ A and orthonor-

mal vectors X,Y ∈ V (A) such that Nz = cos(t)X + sin(t)JY for some
t ∈ (0, π/4]. Then we have Qz = Cz � C(JX + Y ).
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We now assume that M is a Hopf hypersurface. Then the Reeb vector
field ξ = −JN satisfies the following

Sξ = αξ,

where S denotes the shape operator of the real hypersurface M for a smooth
function α = g(Sξ, ξ) on M . When we consider the transformed JX by the
Kähler structure J on Qm for any vector field X on M in Qm, we may put

JX = φX + η(X)N

for a unit normal N to M . Then, we now consider the equation of Codazzi

g((∇XS)Y − (∇Y S)X,Z) = η(X)g(φY,Z)−η(Y )g(φX,Z)−2η(Z)g(φX, Y )
+ g(X,AN)g(AY,Z) − g(Y,AN)g(AX,Z)
+ g(X,Aξ)g(JAY,Z) − g(Y,Aξ)g(JAX,Z).

(3.1)

Putting Z = ξ in (3.1) we get

g((∇XS)Y − (∇Y S)X, ξ) = −2g(φX, Y )
+ g(X,AN)g(Y,Aξ) − g(Y,AN)g(X,Aξ)
− g(X,Aξ)g(JY,Aξ) + g(Y,Aξ)g(JX,Aξ).

On the other hand, we have

g((∇XS)Y − (∇Y S)X, ξ)
= g((∇XS)ξ, Y ) − g((∇Y S)ξ,X)
= (Xα)η(Y ) − (Y α)η(X) + αg((Sφ + φS)X,Y ) − 2g(SφSX, Y ).

Comparing the previous two equations and putting X = ξ we have

Y α = (ξα)η(Y ) − 2g(ξ,AN)g(Y,Aξ) + 2g(Y,AN)g(ξ,Aξ).

Reinserting this into the previous equation yields

g((∇XS)Y − (∇Y S)X, ξ)
= −2g(ξ,AN)g(X,Aξ)η(Y ) + 2g(X,AN)g(ξ,Aξ)η(Y )

+ 2g(ξ,AN)g(Y,Aξ)η(X) − 2g(Y,AN)g(ξ,Aξ)η(X)
+αg((φS + Sφ)X,Y ) − 2g(SφSX, Y ).

From the above equations we obtain

0 = 2g(SφSX, Y ) − αg((φS + Sφ)X,Y ) − 2g(φX, Y )
+ g(X,AN)g(Y,Aξ) − g(Y,AN)g(X,Aξ)
− g(X,Aξ)g(JY,Aξ) + g(Y,Aξ)g(JX,Aξ)
+ 2g(ξ,AN)g(X,Aξ)η(Y ) − 2g(X,AN)g(ξ,Aξ)η(Y )
− 2g(ξ,AN)g(Y,Aξ)η(X) + 2g(Y,AN)g(ξ,Aξ)η(X). (3.2)

At each point z ∈ M we can choose A ∈ Az such that

N = cos(t)Z1 + sin(t)JZ2
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for some orthonormal vectors Z1, Z2 ∈ V (A) and 0 ≤ t ≤ π
4 (see Proposition

3 in [13]). Note that t is a function on M . First of all, since ξ = −JN , we
have

AN = cos(t)Z1 − sin(t)JZ2,

ξ = sin(t)Z2 − cos(t)JZ1,

Aξ = sin(t)Z2 + cos(t)JZ1. (3.3)

This implies g(ξ,AN) = 0 and hence

0 = 2g(SφSX, Y ) − αg((φS + Sφ)X,Y ) − 2g(φX, Y )
+ g(X,AN)g(Y,Aξ) − g(Y,AN)g(X,Aξ)
− g(X,Aξ)g(JY,Aξ) + g(Y,Aξ)g(JX,Aξ)
− 2g(X,AN)g(ξ,Aξ)η(Y ) + 2g(Y,AN)g(ξ,Aξ)η(X). (3.4)

4. Killing Shape Operator and a Key Lemma

By the equation of Gauss, the curvature tensor R(X,Y )Z for a real hyper-
surface M in Qm can be described in terms of the complex structure J and
the complex conjugation A ∈ A as follows:

R(X, Y )Z = g(Y, Z)X − g(X, Z)Y + g(φY, Z)φX − g(φX, Z)φY − 2g(φX, Y )φZ

+ g(AY, Z)AX − g(AX, Z)AY + g(JAY, Z)JAX − g(JAX, Z)JAY

+ g(SY, Z)SX − g(SX, Z)SY

for any X,Y,Z∈TzM , z∈M .
Now let us put

AX = BX + ρ(X)N,

for any vector field X∈TzQ
m, z∈M , ρ(X) = g(AX,N), where BX and

ρ(X)N , respectively, denote the tangential and normal component of the
vector field AX. Then Aξ = Bξ + ρ(ξ)N and ρ(ξ) = g(Aξ,N) = 0. Then it
follows that

AN = AJξ = −JAξ = −J(Bξ + ρ(ξ)N)
= −(φBξ + η(Bξ)N).

The shape operator S of M in Qm is said to be Killing if it satisfies

(∇XS)Y + (∇Y S)X = 0. (4.1)

for any X,Y ∈TzM , z∈M .
From (4.1), together with the equation of Codazzi (3.1), it follows that

2g((∇XS)Y,Z) = η(X)g(φY,Z) − η(Y )g(φX,Z) − 2η(Z)g(φX, Y )
+ g(X,AN)g(AY,Z) − g(Y,AN)g(AX,Z)
+ g(X,Aξ)g(JAY,Z) − g(Y,Aξ)g(JAX,Z). (4.2)

Since we have assumed the real hypersurface M in Qm is Hopf, then Sξ = αξ.
This gives

(∇XS)ξ = (Xα)ξ + αφSX − SφSX.
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From this, let us put Y = ξ in (4.2) and use g(Aξ,N) = 0. We see that

2g((Xα)ξ + αφSX − SφSX,Z) = −g(φX,Z) + g(X,AN)g(Aξ,Z) (4.3)
+ g(X,Aξ)g(JAξ, Z) − g(ξ,Aξ)g(JAX,Z). (4.4)

Here, let us take X = ξ in (4.3) and also use g(ξ,AN) = 0. We have

2(ξα)η(Z) = g(ξ,Aξ)g(JAξ, Z) − g(ξ,Aξ)g(JAξ, Z) = 0.

From this we get ξα = 0. Then the derivative Y α in Sect. 3 becomes

Y α = 2g(Y,AN)g(ξ,Aξ).

From this, together with (4.3), it follows that

2g(2g(X, AN)g(ξ, Aξ)ξ + αφSX − SφSX, Z) = −g(φX, Z) + g(X, AN)g(Aξ, Z)

+ g(X, Aξ)g(JAξ, Z) − g(ξ, Aξ)g(JAX, Z). (4.5)

Then by putting Z = ξ into (4.3), we have

4g(X,AN)g(ξ,Aξ) = g(X,AN)g(Aξ, ξ) + g(X,Aξ)g(JAξ, ξ)
− g(ξ,Aξ)g(JAX, ξ)

= 2g(X,AN)g(Aξ, ξ). (4.6)

Since g(Aξ,N) = 0, (4.6) gives

g(Aξ, ξ)g(AN,X) = 0.

Then we have g(Aξ, ξ) = 0 or (AN)T = 0, where (AN)T denotes the tangen-
tial part of the vector AN .

We will use the result of this discussion to prove the following

Lemma 4.1. Let M be a Hopf real hypersurface in Qm, m≥3, with Killing
shape operator. Then the unit normal vector field N is singular, that is, N is
A-isotropic or A-principal.

Proof. In the above discussion, let us consider the first case g(Aξ, ξ) = 0.
Then it implies that

0 = g(Aξ, ξ) = g(AJN, JN) = −g(JAN, JN) = −g(AN,N).

If we insert N = cos tZ1 +sin tJZ2 for Z1, Z2∈V (A) into the above equation,
we have cos2 t − sin2 t = 0. By section 2, we have t = π

4 , that is, N =
1√
2
(X + JY ) for some X,Y ∈V (A). So the unit normal N is A-isotropic.

Next we consider the case that (AN)T = 0. Then AN = (AN)T +
g(AN,N)N = g(AN,N)N . So it follows that

N = A2N = g(AN,N)AN = g2(AN,N)N.

So g(AN,N) = ±1 gives that AN = ±N . That is, the unit normal N is
A-principal. �

Due to Lemma 4.1, the classification of Hopf real hypersurfaces with
Killing shape operator in Qm splits into two cases, depending on the unit
normal N is either A-principal or A-isotropic. We will study these two cases in
the following two sections. In Sect. 5, we will obtain the classification of Hopf
real hypersurfaces in Qm with Killing shape operator and A-isotropic unit
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normal vector field and in Sect. 6 a non-existence of Hopf real hypersurfaces
with Killing shape operator and A-principal vector field will be proved.

5. Proof of Main Theorem with A-Isotropic Unit Normal

In this section, let us assume that the unit normal vector field N is A-
isotropic. The normal vector field N can be written

N =
1√
2
(Z1 + JZ2)

for Z1, Z2∈V (A), where V (A) denotes the (+1)-eigenspace of the complex
conjugation A∈A. Then it follows that

AN =
1√
2
(Z1 − JZ2), AJN = − 1√

2
(JZ1 + Z2), and JN =

1√
2
(JZ1 − Z2).

From this, together with (3.3) and the anti-commuting property AJ = −JA,
it follows that

g(ξ,Aξ) = g(JN,AJN) = 0, g(ξ,AN) = 0 and g(AN,N) = 0.

Now (4.3) gives the following for any X,Z∈TzM , z∈M

2g(αφSX − SφSX, Z) = −g(φX, Z) + g(X, AN)g(Aξ, Z) + g(X, Aξ)g(JAξ, Z)

= −g(φX, Z) + g(X, AN)g(Aξ, Z) − g(X, Aξ)g(AN, Z).

(5.1)

Since Aξ,AN∈TxM , x∈M , it implies

2(αφSX − SφX) = −φX + g(X,AN)Aξ − g(X,Aξ)AN. (5.2)

On the other hand, from the formula (5.6) of Suh [19] for a Hopf real
hypersurface M with A-isotropic unit normal N

2SφSX = α(Sφ + φS)X + 2φX − 2g(X,AN)Aξ + 2g(X,Aξ)AN. (5.3)

Then by virtue of (5.2) and (5.3), we have

− 2SφSX = αSφX − 3αφSX. (5.4)

We know that the tangent space TzM , z∈M is decomposed as follows:

TzM = [ξ]⊕[Aξ,AN ]⊕Q,

where C�Q = Q⊥ = Span[Aξ,AN ].

Lemma 5.1. Let M be a Hopf real hypersurface in the complex quadric Qm,
m≥3, with A-isotropic unit normal vector field. Then

SAN = 0, and SAξ = 0.
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Proof. Let us denote by C�Q = Q⊥ = Span[Aξ,AN ]. Since N is A-isotropic,
g(AN,N) = 0 and g(Aξ, ξ) = 0. By differentiating g(AN,N) = 0 and using
(∇̄XA)Y = q(X)JAY and the equation of Weingarten, we know that

0 = g(∇̄X(AN), N) + g(AN, ∇̄XN)
= g(q(X)JAN − ASX,N) − g(AN,SX)
= −2g(ASX,N)
= −2g(X,SAN)

Then SAN = 0. Moreover, by differentiating g(Aξ,N) = 0 and using
g(AN,N) = 0, we have the following formula

0 = g(∇̄X(Aξ), N) + g(Aξ, ∇̄XN)
= g(q(X)JAξ + A(φSX + g(SX, ξ)N), N) − g(SAξ,X)
= −2g(SAξ,X)

for any X∈TzM , z∈M , where in the third equality we have used φAN =
JAN = −AJN = Aξ. Then it follows that

SAξ = 0.

It completes the proof of our assertion. �

By Lemma 5.1 we know that the distribution Q⊥ for a Hopf real hy-
persurface M in Qm is invariant by the shape operator S, so the distribution
Q is also S-invariant. From this fact, we may consider a principal curvature
vector X∈Q such that SX = λX. Then (5.4) gives

(2λ + α)SφX = 3αλφX.

If 2λ+α = 0 holds, then this equation would imply 3αλφX = 0, and therefore,
as α �= 0 and λ = −α

2 �= 0, we would have φX = 0. But this is impossible for
X∈Q. Thus we have 2λ + α �= 0 and hence we obtain

SφX =
3αλ

2λ + α
φX. (5.5)

For X∈Q, we know that g(X,AN) = g(X,Aξ) = 0. So (5.3) gives the fol-
lowing

2SφSX = α(Sφ + φS)X + 2φX. (5.6)

That is, for X∈Q such that SX = λX the formula (5.6) yields

2λSφX = αSφX + (αλ + 2)φX. (5.7)

If α = 2λ, we should have 2(λ2 + 1)φX = 0, which is impossible. Then we
get SφX = μφX with

μ =
αλ + 2
2λ − α

. (5.8)

Then (5.5) and (5.8) give

αλ + 2
2λ − α

φX =
3αλ

2λ + α
φX.
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From this, any principal curvatures λ and μ of the distribution Q satisfy the
following quadratic equation

2αλ2 − 2(α2 + 1)λ − α = 0. (5.9)

The solutions become the following constant principal curvatures given
by

λ, μ =
(α2 + 1)±√

(α2 + 1)2 + 2α2

2α
, (5.10)

because the Reeb function α is constant for A-isotropic unit normal N (see
[18]). Here we note that the Reeb function α can not vanish. If the function
α identically vanishes, then (5.9) gives λ = 0. From this, together with (5.7),
we have φX = 0, which implies a contradiction.

From this, together with Lemma 5.1, the expression of the shape oper-
ator becomes the following

S =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

α 0 0 0 · · · 0 0 · · · 0
0 0 0 0 · · · 0 0 · · · 0
0 0 0 0 · · · 0 0 · · · 0
0 0 0 λ · · · 0 0 · · · 0
...

...
...

...
. . .

...
... · · · ...

0 0 0 0 · · · λ 0 · · · 0
0 0 0 0 · · · 0 μ · · · 0
...

...
...

...
...

...
...

. . .
...

0 0 0 0 · · · 0 0 · · · μ

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

where the principal curvatures λ and μ are given by (5.10) with multiplicities
m−2 respectively. If both had different multiplicities, then (α2+1)2+2α2 = 0,
which is impossible.

Summing up the above discussions, we give the following

Theorem 5.2. Let M be a real hypersurface in the complex quadric Qm with
A-isotropic unit normal vector field. Then M has 4 distinct constant principal
curvatures given by

α �=0, β = γ = 0, λ =
(α2 + 1) +

√
(α2 + 1)2 + 2α2

2α
, and

μ =
(α2 + 1) − √

(α2 + 1)2 + 2α2

2α

with corresponding principal curvature spaces respectively

Tα = [ξ], Tβ = [AN ], Tγ = [Aξ], φ(Tλ) = Tμ, and dim Tλ = dim Tμ = m − 2.

6. Proof of Main Theorem with A-Principal Normal Vector
Field

In this section, let us consider a real hypersurface M in Qm with Killing
shape operator for the case that the unit normal N is A-principal. Choose
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A∈A so that N∈V (A) holds. Then the Killing shape operator condition gives
that

2g({αφSX − SφSX}, Z) = −g(φX,Z) + g(φAX,Z),

where we have used g(ξ,Aξ) = −1 and JAX = φAX + η(AX)N . It follows
that

2(αφSX − SφSX) = −φX + φAX. (6.1)
Since the unit normal vector field N is A-principal, Aξ = −ξ. Then differen-
tiating this and using Gauss equation, we get

∇X(Aξ) = ∇̄X(Aξ) − g(SX,Aξ)N = −q(X)N + αη(X)N, (6.2)

where q denotes a certain 1-form defined on M as in the introduction. From
this, together with ∇X(Aξ) = −∇Xξ = −φSX, we have

φX = φAX.

This gives

AX = X − 2η(X)ξ.

Then we have

TrA = g(AN,N) +
∑2m−1

i=1
g(Aei, ei)

=
∑2m−1

i=1
g(ei − 2η(ei)ξ, ei)

= 2(m − 1). (6.3)

But TrA = 0, because TzQ
m = V (A)⊕JV (A), where V (A) = {X∈TzQ

m|
AX = X} and JV (A) = {X∈TzQ

m|AX = −X}. This gives us a contradic-
tion. So we obtain the

Theorem 6.1. There does not exist any Hopf real hypersurface in the complex
quadric Qm with Killing shape operator if the unit normal vector field is A-
principal.

Summing up all of discussions including Sects. 4 and 5, by Lemma 4.1,
Theorems 5.2 and 6.1, we give a complete proof of our Main Theorem 1 in
the introduction.
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