Real Hypersurfaces with Killing Shape Operator in the Complex Quadric

Juan de Dios Pérez, Imsoon Jeong, Junhyung Ko and Young Jin Suh

Abstract

We introduce the notion of Killing shape operator for real hypersurfaces in the complex quadric $Q^{m}=S O_{m+2} / S O_{m} S O_{2}$. The Killing shape operator condition implies that the unit normal vector field N becomes \mathfrak{A}-principal or \mathfrak{A}-isotropic. Then according to each case, we give a complete classification of Hopf real hypersurfaces in $Q^{m}=S O_{m+2} / S O_{m} S O_{2}$ with Killing shape operator.

Mathematics Subject Classification. Primary 53C40; Secondary 53C55.
Keywords. Killing shape operator, \mathfrak{A}-isotropic, \mathfrak{A}-principal, Kähler structure, Complex conjugation, Complex quadric.

1. Introduction

When we consider some Hermitian symmetric spaces of rank 2, we can usually give examples of Riemannian symmetric spaces $S U_{m+2} / S\left(U_{2} U_{m}\right)$ and $S U_{2, m} / S\left(U_{2} U_{m}\right)$, which are said to be complex two-plane Grassmannians and complex hyperbolic two-plane Grassmannians, respectively (see [15-17]). These are viewed as Hermitian symmetric spaces and quaternionic Kähler symmetric spaces equipped with the Kähler structure J and the quaternionic Kähler structure \mathfrak{J}.

In the complex projective space $\mathbb{C} P^{m+1}$ and the quaternionic projective space $\mathbb{Q} P^{m+1}$, some classifications of real hypersurfaces related to commuting Ricci tensor were investigated by Kimura [9], and Pérez and Suh [11,12] respectively. The classification problems of real hypersurfaces in the complex 2-plane Grassmannian $G_{2}\left(\mathbb{C}^{m+2}\right)=S U_{m+2} / S\left(U_{2} U_{m}\right)$ with certain geometric conditions were mainly discussed in Jeong et al. [2], Jeong et al. [3,4], Suh [15-17], where the classification of contact hypersurfaces, parallel Ricci

[^0]tensor, harmonic curvature and structure Jacobi operator of a real hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$ were extensively studied. Moreover, in [17] we have asserted that the Reeb flow on a real hypersurface in $S U_{2, m} / S\left(U_{2} U_{m}\right)$ is isometric if and only if M is an open part of a tube around a totally geodesic $S U_{2, m-1} / S\left(U_{2} U_{m-1}\right) \subset S U_{2, m} / S\left(U_{2} U_{m}\right)$.

As another kind of Hermitian symmetric space with rank 2 of compact type different from the above ones, we can consider the example of complex quadric $Q^{m}=S O_{m+2} / S O_{m} S O_{2}$, which is a complex hypersurface in complex projective space $\mathbb{C} P^{m+1}$ (see Klein [5,6,8] and Smyth [14]). The complex quadric can also be regarded as a kind of real Grassmann manifold of compact type with rank 2 (see Kobayashi and Nomizu [10]). Accordingly, the complex quadric admits two important geometric structures, an S^{1}-bundle \mathfrak{A} of real structures and a Kähler structure J, which anti-commute with each other, that is, $A J=-J A$ for every $A \in \mathfrak{A}$. Then for $m \geq 2$ the triple $\left(Q^{m}, J, g\right)$ is a Hermitian symmetric space of compact type with rank 2 and its maximal sectional curvature is equal to 4 (see Klein [5,7] and Reckziegel [13]). This geometric structure determines a maximal \mathfrak{A}-invariant subbundle \mathcal{Q} of the tangent bundle $T M$ of a real hypersurface M in Q^{m}.

Moreover, the derivative of the complex conjugation A on Q^{m} is defined by

$$
\left(\bar{\nabla}_{X} A\right) Y=q(X) J A Y
$$

for any vector fields X and Y on M, where q denotes a certain 1-form defined on M.

When the shape operator S of M in Q^{m} satisfies $\left(\nabla_{X} S\right) Y=\left(\nabla_{Y} S\right) X$ for any X, Y tangent to M in Q^{m}, we say that the shape operator is of Codazzi type. In [18] we gave a non-existence result on such real hypersurfaces as follows:

Theorem A. There do not exist any real hypersurfaces in complex quadric $Q^{m}, m \geq 3$, with shape operator of Codazzi type.

Recall that a nonzero tangent vector $W \in T_{[z]} Q^{m}$ is called singular if it is tangent to more than one maximal flat in Q^{m}. There are two types of singular tangent vectors for the complex quadric Q^{m} :

1. If there exists a conjugation $A \in \mathfrak{A}$ such that $W \in V(A):=\operatorname{Eig}(A, 1)$, then W is called \mathfrak{A}-principal.
2. If there exist a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that $W /\|W\|=(X+J Y) / \sqrt{2}$, then W is called \mathfrak{A}-isotropic.
When we consider a hypersurface M in the complex quadric Q^{m}, under the assumption of some geometric properties, the unit normal vector field N of M in Q^{m} is either \mathfrak{A}-isotropic or \mathfrak{A}-principal (see [18, 19]). In the first case, where N is \mathfrak{A}-isotropic, we have shown in Suh [18] that M is locally congruent to a tube over a totally geodesic $\mathbb{C} P^{k}$ in $Q^{2 k}$. In the second case, when the unit normal N is \mathfrak{A}-principal, we proved that a contact hypersurface M in Q^{m} is locally congruent to a tube over a totally geodesic and totally real submanifold S^{m} in Q^{m} (see [19]).

The shape operator S of M in Q^{m} is said to be Killing if the operator S satisfies

$$
\left(\nabla_{X} S\right) Y+\left(\nabla_{Y} S\right) X=0
$$

for any $X, Y \in T_{z} M, z \in M$. The equation is equivalent to $\left(\nabla_{X} S\right) X=0$ for any $X \in T_{z} M, z \in M$, because of linearization. The geometric meaning of this condition is as follows:

Consider a geodesic γ with initial conditions $\gamma(0)=z$ and $\dot{\gamma}(0)=X$. Then the transformed vector field $S \dot{\gamma}$ is Levi-Civita parallel along the geodesic γ of the vector field X (see Blair [1] and Tachibana [21]).

When we consider a real hypersurface in the complex quadric Q^{m} with Killing shape operator, we can assert

Main Theorem 1. Let M be a Hopf real hypersurface in $Q^{m}, m \geq 3$, with Killing shape operator. Then the unit normal vector field N is \mathfrak{A}-isotropic.

Then, motivated by such result, we give a complete classification for real hypersurfaces in the complex quadric Q^{m} with Killing shape operator as follows:

Main Theorem 2. Let M be a Hopf real hypersurface in the complex quadric $Q^{m}, m \geq 4$, with Killing shape operator. Then M has 4 distinct constant principal curvatures given by

$$
\begin{gathered}
\alpha \neq 0, \beta=\gamma=0, \lambda=\frac{\left(\alpha^{2}+1\right)+\sqrt{\left(\alpha^{2}+1\right)^{2}+2 \alpha^{2}}}{2 \alpha}, \text { and } \\
\mu=\frac{\left(\alpha^{2}+1\right)-\sqrt{\left(\alpha^{2}+1\right)^{2}+2 \alpha^{2}}}{2 \alpha}
\end{gathered}
$$

whose corresponding principal curvature spaces are
$T_{\alpha}=[\xi], T_{\beta}=[A N], T_{\gamma}=[A \xi], \phi\left(T_{\lambda}\right)=T_{\mu}$, and $\operatorname{dim} T_{\lambda}=\operatorname{dim} T_{\mu}=m-2$.

Remark 1.1. Usually, the Killing shape operator is a generalization of the parallel shape operator S of M in Q^{m}, that is, $\nabla_{X} S=0$ for any tangent vector field X on M. The parallelism of shape operator has a geometrical meaning that every eigen space of the shape operator S is parallel in any direction on M in Q^{m}. Then naturally, by the equation of Codazzi in Section 3, we can prove easily that there do not exist any Hopf real hypersurface in $Q^{m}, m \geq 3$, with parallel shape operator (see [18]).

2. The Complex Quadric

For more background to this section, we refer to $[5,10,13,18-20]$. The complex quadric Q^{m} is the complex hypersurface in $\mathbb{C} P^{m+1}$ which is defined by the equation $z_{0}^{2}+\cdots+z_{m+1}^{2}=0$, where z_{0}, \ldots, z_{m+1} are homogeneous coordinates on $\mathbb{C} P^{m+1}$. We equip Q^{m} with the Riemannian metric g which is induced from the Fubini-Study metric \bar{g} on $\mathbb{C} P^{m+1}$ with constant holomorphic sectional curvature 4. The Fubini-Study metric \bar{g} is defined by
$\bar{g}(X, Y)=\Phi(J X, Y)$ for any vector fields X and Y on $\mathbb{C} P^{m+1}$ and a globally closed $(1,1)$-form Φ given by $\Phi=-4 i \partial \bar{\partial} \log f_{j}$ on an open set $U_{j}=$ $\left\{\left[z_{0}, \ldots, z_{j}, \ldots, z_{m+1}\right] \in \mathbb{C} P^{m+1} \mid z_{j} \neq 0\right\}$, where the function f_{j} is given by $f_{j}=$ $\sum_{k=0}^{m+1} t_{j}^{k} \bar{t}_{j}^{k}$, and $t_{j}^{k}=\frac{z_{k}}{z_{j}}$ for $j, k=0, \ldots, m+1$. Naturally, the Kähler structure on $\mathbb{C} P^{m+1}$ induces canonically a Kähler structure (J, g) on the complex quadric Q^{m}.

The complex projective space $\mathbb{C} P^{m+1}$ is a Hermitian symmetric space of the special unitary group $S U_{m+2}$, namely $\mathbb{C} P^{m+1}=S U_{m+2} / S\left(U_{m+1} U_{1}\right)$. We denote by $o=[0, \ldots, 0,1] \in \mathbb{C} P^{m+1}$ the fixed point of the action of the stabilizer $S\left(U_{m+1} U_{1}\right)$. The special orthogonal group $S O_{m+2} \subset S U_{m+2}$ acts on $\mathbb{C} P^{m+1}$ with cohomogeneity one. The orbit containing o is a totally geodesic real projective space $\mathbb{R} P^{m+1} \subset \mathbb{C} P^{m+1}$. The second singular orbit of this action is the complex quadric $Q^{m}=S O_{m+2} / S O_{m} S O_{2}$. This homogeneous space model leads to the geometric interpretation of the complex quadric Q^{m} as the Grassmann manifold $G_{2}^{+}\left(\mathbb{R}^{m+2}\right)$ of oriented 2-planes in \mathbb{R}^{m+2}. It also gives a model of Q^{m} as a Hermitian symmetric space of rank 2. The complex quadric Q^{1} is isometric to a sphere S^{2} with constant curvature, and Q^{2} is isometric to the Riemannian product of two 2 -spheres with constant curvature. For this reason, we will assume $m \geq 3$ from now on.

In addition, the complex projective space $\mathbb{C} P^{m+1}$ is defined using the Hopf fibration

$$
\pi: S^{2 m+3} \rightarrow \mathbb{C} P^{m+1}, \quad z \rightarrow[z],
$$

which is a Riemannian submersion. Then, we can consider the following diagram for the complex quadric Q^{m} :

The submanifold \tilde{Q} of codimension 2 in $S^{2 m+3}$ is called the Stiefel manifold of orthonormal 2-frames in \mathbb{R}^{m+2}, which is given by

$$
\tilde{Q}=\left\{x+i y \in \mathbb{C}^{m+2} \left\lvert\, g(x, x)=g(y, y)=\frac{1}{2}\right. \text { and } g(x, y)=0\right\}
$$

where $g(x, y)=\sum_{i=1}^{m+2} x_{i} y_{i}$ for any $x=\left(x_{1}, \ldots, x_{m+2}\right)$ and $y=\left(y_{1}, \ldots, y_{m+2}\right)$ $\in \mathbb{R}^{m+2}$. Then, the tangent space is decomposed as $T_{z} S^{2 m+3}=H_{z} \oplus F_{z}$ and $T_{z} \tilde{Q}=H_{z}(Q) \oplus F_{z}(Q)$ at $z=x+i y \in \tilde{Q}$ respectively, where the horizontal subspaces H_{z} and $H_{z}(Q)$ are given by $H_{z}=(\mathbb{C} z)^{\perp}$ and $H_{z}(Q)=(\mathbb{C} z \oplus \mathbb{C} \bar{z})^{\perp}$, and $F_{z}=F_{z}(Q)=\mathbb{R} i z$ is the tangent space to the fiber $S^{1} \cdot z$ of π through the point z. Here $H_{z}(Q)$ is a subspace of H_{z} of real codimension 2 and orthogonal to the two unit normals $-\bar{z}$ and $-J \bar{z}$. Explicitly, at the point $z=x+i y \in \tilde{Q}$ it can be described as

$$
H_{z}=\left\{u+i v \in \mathbb{C}^{m+2} \mid \quad g(x, u)+g(y, v)=0, \quad g(x, v)=g(y, u)\right\}
$$

and

$$
H_{z}(Q)=\left\{u+i v \in H_{z} \mid \quad g(u, x)=g(u, y)=g(v, x)=g(v, y)=0\right\}
$$

where $\mathbb{C}^{m+2}=\mathbb{R}^{m+2} \oplus i \mathbb{R}^{m+2}$, and $g(u, x)=\sum_{i=1}^{m+2} u_{i} x_{i}$ for any $u=\left(u_{1}, \ldots\right.$, $\left.u_{m+2}\right), x=\left(x_{1}, \ldots, x_{m+2}\right) \in \mathbb{R}^{m+2}$.

These spaces can be naturally projected by the differential map π_{*} as $\pi_{*} H_{z}=T_{\pi(z)} \mathbb{C} P^{m+1}$ and $\pi_{*} H_{z}(Q)=T_{\pi(z)} Q$ respectively. This gives that at the point $\pi(z)=[z]$, the tangent subspace $T_{[z]} Q^{m}$ becomes a complex subspace of $T_{[z]} \mathbb{C} P^{m+1}$ with complex codimension 1 and has two unit normal vector fields $-\bar{z}$ and $-J \bar{z}$ (see Reckziegel [13]).

Then let us denote by $A_{\bar{z}}$ the shape operator of Q^{m} in $\mathbb{C} P^{m+1}$ with respect to the unit normal \bar{z}. It is defined by $A_{\bar{z}} w=\bar{\nabla}_{w} \bar{z}=\bar{w}$ for a complex Euclidean connection $\bar{\nabla}$ induced from \mathbb{C}^{m+2} and all $w \in T_{[z]} Q^{m}$. That is, the shape operator $A_{\bar{z}}$ is just a complex conjugation restricted to $T_{[z]} Q^{m}$. Moreover, it satisfies the following for any $w \in T_{[z]} Q^{m}$ and any $\lambda \in S^{1} \subset \mathbb{C}$

$$
\begin{aligned}
A_{\lambda \bar{z}}^{2} w & =A_{\lambda \bar{z}} A_{\lambda \bar{z}} w=A_{\lambda \bar{z}} \lambda \bar{w} \\
& =\lambda A_{\bar{z}} \lambda \bar{w}=\lambda \bar{\nabla}_{\lambda \bar{w}} \bar{z}=\lambda \overline{\bar{\lambda}} w \\
& =|\lambda|^{2} w=w .
\end{aligned}
$$

Accordingly, $A_{\lambda \bar{z}}^{2}=I$ for any $\lambda \in S^{1}$. Thus, the shape operator $A_{\bar{z}}$ becomes an anti-commuting involution such that $A_{\bar{z}}^{2}=I$ and $A J=-J A$ on the complex vector space $T_{[z]} Q^{m}$ and

$$
T_{[z]} Q^{m}=V\left(A_{\bar{z}}\right) \oplus J V\left(A_{\bar{z}}\right),
$$

where $V\left(A_{\bar{z}}\right)=\mathbb{R}^{m+2} \cap T_{[z]} Q^{m}$ is the (+1)-eigenspace and $J V\left(A_{\bar{z}}\right)=i \mathbb{R}^{m+2} \cap$ $T_{[z]} Q^{m}$ is the (-1)-eigenspace of $A_{\bar{z}}$. That is, $A_{\bar{z}} X=X$ and $A_{\bar{z}} J X=-J X$, respectively, for any $X \in V\left(A_{\bar{z}}\right)$.

Geometrically, this means that the shape operator $A_{\bar{z}}$ defines a real structure on the complex vector space $T_{[z]} Q^{m}$, or equivalently, is a complex conjugation on $T_{[z]} Q^{m}$. Since the real codimension of Q^{m} in $\mathbb{C} P^{m+1}$ is 2 , this induces an S^{1}-subbundle \mathfrak{A} of the endomorphism bundle $\operatorname{End}\left(T Q^{m}\right)$ consisting of complex conjugations.

There is a geometric interpretation of these conjugations. The complex quadric Q^{m} can be viewed as the complexification of the m-dimensional sphere S^{m}. Through each point $[z] \in Q^{m}$ there exists a one-parameter family of real forms of Q^{m} which are isometric to the sphere S^{m}. These real forms are congruent to each other under action of the center SO_{2} of the isotropy subgroup of $S O_{m+2}$ at $[z]$. The isometric reflection of Q^{m} in such a real form S^{m} is an isometry, and the differential at $[z]$ of such a reflection is a conjugation on $T_{[z]} Q^{m}$. In this way the family \mathfrak{A} of conjugations on $T_{[z]} Q^{m}$ corresponds to the family of real forms S^{m} of Q^{m} containing [z], and the subspaces $V(A) \subset T_{[z]} Q^{m}$ correspond to the tangent spaces $T_{[z]} S^{m}$ of the real forms S^{m} of Q^{m}.

The Gauss equation for $Q^{m} \subset \mathbb{C} P^{m+1}$ implies that the Riemannian curvature tensor \bar{R} of Q^{m} can be described in terms of the complex structure J and the complex conjugations $A \in \mathfrak{A}$:

$$
\begin{aligned}
\bar{R}(X, Y) Z= & g(Y, Z) X-g(X, Z) Y+g(J Y, Z) J X-g(J X, Z) J Y-2 g(J X, Y) J Z \\
& +g(A Y, Z) A X-g(A X, Z) A Y+g(J A Y, Z) J A X-g(J A X, Z) J A Y .
\end{aligned}
$$

Note that J and each complex conjugation A anti-commute, that is, $A J=$ $-J A$ for each $A \in \mathfrak{A}$.

For every unit tangent vector $W \in T_{[z]} Q^{m}$ there exist a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that

$$
W=\cos (t) X+\sin (t) J Y
$$

for some $t \in[0, \pi / 4]$. The singular tangent vectors correspond to the values $t=0$ and $t=\pi / 4$. When $W=X$ for $X \in V(A), t=0, X$ is contained in all 2-flats $\mathbb{R} X+\mathbb{R} J Z$ with $Z \in V(A)$ orthogonal to X. So the tangent vector X is said to be singular. When $W=(X+J Y) / \sqrt{2}$ for $t=\frac{\pi}{4}$, it is also a singular tangent vector, which belongs to all 2-flats $\mathbb{R} \tilde{X}+\mathbb{R} J \tilde{Y}$, where

$$
\tilde{X}=\frac{1+\lambda}{2} X+\frac{1-\lambda}{2} J Y
$$

and

$$
\tilde{Y}=-\frac{1-\lambda}{2} J X+\frac{1+\lambda}{2} Y
$$

for some $\lambda \in S^{1}$. If $0<t<\frac{\pi}{4}$ then the unique maximal flat containing W is $\mathbb{R} X \oplus \mathbb{R} J Y$.

3. Some General Equations

Let M be a real hypersurface in Q^{m} and denote by (ϕ, ξ, η, g) the induced almost contact metric structure. Note that the Reeb vector field of M is given by $\xi=-J N$, where N is a (local) unit normal vector field of M and η the corresponding 1-form defined by $\eta(X)=g(\xi, X)$ for any tangent vector field X on M. The tangent bundle $T M$ of M splits orthogonally into $T M=\mathcal{C} \oplus \mathbb{R} \xi$, where $\mathcal{C}=\operatorname{ker}(\eta)$ is the maximal complex subbundle of $T M$. The structure tensor field ϕ, which is defined by $\phi X=J X-\eta(X) N$, restricted to \mathcal{C} coincides with the complex structure J restricted to \mathcal{C}, and $\phi \xi=0$.

At each point $z \in M$ we define a maximal \mathfrak{A}-invariant subspace of $T_{z} M$, $z \in M$ as follows:

$$
\mathcal{Q}_{z}=\left\{X \in T_{z} M \mid A X \in T_{z} M \quad \text { for all } A \in \mathfrak{A}_{z}\right\} .
$$

Then we introduce an important lemma which will be used in the proof of our main Theorem in the introduction.

Lemma 3.1. [18] For each $z \in M$ we have
(i) If N_{z} is \mathfrak{A}-principal, then $\mathcal{Q}_{z}=\mathcal{C}_{z}$.
(ii) If N_{z} is not \mathfrak{A}-principal, there exist a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that $N_{z}=\cos (t) X+\sin (t) J Y$ for some $t \in(0, \pi / 4]$. Then we have $\mathcal{Q}_{z}=\mathcal{C}_{z} \ominus \mathbb{C}(J X+Y)$.

We now assume that M is a Hopf hypersurface. Then the Reeb vector field $\xi=-J N$ satisfies the following

$$
S \xi=\alpha \xi
$$

where S denotes the shape operator of the real hypersurface M for a smooth function $\alpha=g(S \xi, \xi)$ on M. When we consider the transformed $J X$ by the Kähler structure J on Q^{m} for any vector field X on M in Q^{m}, we may put

$$
J X=\phi X+\eta(X) N
$$

for a unit normal N to M. Then, we now consider the equation of Codazzi

$$
\begin{align*}
g\left(\left(\nabla_{X} S\right) Y-\left(\nabla_{Y} S\right) X, Z\right)= & \eta(X) g(\phi Y, Z)-\eta(Y) g(\phi X, Z)-2 \eta(Z) g(\phi X, Y) \\
& +g(X, A N) g(A Y, Z)-g(Y, A N) g(A X, Z) \\
& +g(X, A \xi) g(J A Y, Z)-g(Y, A \xi) g(J A X, Z) \tag{3.1}
\end{align*}
$$

Putting $Z=\xi$ in (3.1) we get

$$
\begin{aligned}
g\left(\left(\nabla_{X} S\right) Y-\left(\nabla_{Y} S\right) X, \xi\right)= & -2 g(\phi X, Y) \\
& +g(X, A N) g(Y, A \xi)-g(Y, A N) g(X, A \xi) \\
& -g(X, A \xi) g(J Y, A \xi)+g(Y, A \xi) g(J X, A \xi)
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
& g\left(\left(\nabla_{X} S\right) Y-\left(\nabla_{Y} S\right) X, \xi\right) \\
& \quad=g\left(\left(\nabla_{X} S\right) \xi, Y\right)-g\left(\left(\nabla_{Y} S\right) \xi, X\right) \\
& \quad=(X \alpha) \eta(Y)-(Y \alpha) \eta(X)+\alpha g((S \phi+\phi S) X, Y)-2 g(S \phi S X, Y)
\end{aligned}
$$

Comparing the previous two equations and putting $X=\xi$ we have

$$
Y \alpha=(\xi \alpha) \eta(Y)-2 g(\xi, A N) g(Y, A \xi)+2 g(Y, A N) g(\xi, A \xi)
$$

Reinserting this into the previous equation yields

$$
\begin{aligned}
& g\left(\left(\nabla_{X} S\right) Y-\left(\nabla_{Y} S\right) X, \xi\right) \\
&=-2 g(\xi, A N) g(X, A \xi) \eta(Y)+2 g(X, A N) g(\xi, A \xi) \eta(Y) \\
&+2 g(\xi, A N) g(Y, A \xi) \eta(X)-2 g(Y, A N) g(\xi, A \xi) \eta(X) \\
&+\alpha g((\phi S+S \phi) X, Y)-2 g(S \phi S X, Y) .
\end{aligned}
$$

From the above equations we obtain

$$
\begin{align*}
0= & 2 g(S \phi S X, Y)-\alpha g((\phi S+S \phi) X, Y)-2 g(\phi X, Y) \\
& +g(X, A N) g(Y, A \xi)-g(Y, A N) g(X, A \xi) \\
& -g(X, A \xi) g(J Y, A \xi)+g(Y, A \xi) g(J X, A \xi) \\
& +2 g(\xi, A N) g(X, A \xi) \eta(Y)-2 g(X, A N) g(\xi, A \xi) \eta(Y) \\
& -2 g(\xi, A N) g(Y, A \xi) \eta(X)+2 g(Y, A N) g(\xi, A \xi) \eta(X) . \tag{3.2}
\end{align*}
$$

At each point $z \in M$ we can choose $A \in \mathfrak{A}_{z}$ such that

$$
N=\cos (t) Z_{1}+\sin (t) J Z_{2}
$$

for some orthonormal vectors $Z_{1}, Z_{2} \in V(A)$ and $0 \leq t \leq \frac{\pi}{4}$ (see Proposition 3 in [13]). Note that t is a function on M. First of all, since $\xi=-J N$, we have

$$
\begin{align*}
A N & =\cos (t) Z_{1}-\sin (t) J Z_{2}, \\
\xi & =\sin (t) Z_{2}-\cos (t) J Z_{1}, \\
A \xi & =\sin (t) Z_{2}+\cos (t) J Z_{1} . \tag{3.3}
\end{align*}
$$

This implies $g(\xi, A N)=0$ and hence

$$
\begin{align*}
0= & 2 g(S \phi S X, Y)-\alpha g((\phi S+S \phi) X, Y)-2 g(\phi X, Y) \\
& +g(X, A N) g(Y, A \xi)-g(Y, A N) g(X, A \xi) \\
& -g(X, A \xi) g(J Y, A \xi)+g(Y, A \xi) g(J X, A \xi) \\
& -2 g(X, A N) g(\xi, A \xi) \eta(Y)+2 g(Y, A N) g(\xi, A \xi) \eta(X) . \tag{3.4}
\end{align*}
$$

4. Killing Shape Operator and a Key Lemma

By the equation of Gauss, the curvature tensor $R(X, Y) Z$ for a real hypersurface M in Q^{m} can be described in terms of the complex structure J and the complex conjugation $A \in \mathfrak{A}$ as follows:

$$
\begin{aligned}
R(X, Y) Z= & g(Y, Z) X-g(X, Z) Y+g(\phi Y, Z) \phi X-g(\phi X, Z) \phi Y-2 g(\phi X, Y) \phi Z \\
& +g(A Y, Z) A X-g(A X, Z) A Y+g(J A Y, Z) J A X-g(J A X, Z) J A Y \\
& +g(S Y, Z) S X-g(S X, Z) S Y
\end{aligned}
$$

for any $X, Y, Z \in T_{z} M, z \in M$.
Now let us put

$$
A X=B X+\rho(X) N
$$

for any vector field $X \in T_{z} Q^{m}, z \in M, \rho(X)=g(A X, N)$, where $B X$ and $\rho(X) N$, respectively, denote the tangential and normal component of the vector field $A X$. Then $A \xi=B \xi+\rho(\xi) N$ and $\rho(\xi)=g(A \xi, N)=0$. Then it follows that

$$
\begin{aligned}
A N & =A J \xi=-J A \xi=-J(B \xi+\rho(\xi) N) \\
& =-(\phi B \xi+\eta(B \xi) N)
\end{aligned}
$$

The shape operator S of M in Q^{m} is said to be Killing if it satisfies

$$
\begin{equation*}
\left(\nabla_{X} S\right) Y+\left(\nabla_{Y} S\right) X=0 \tag{4.1}
\end{equation*}
$$

for any $X, Y \in T_{z} M, z \in M$.
From (4.1), together with the equation of Codazzi (3.1), it follows that

$$
\begin{align*}
2 g\left(\left(\nabla_{X} S\right) Y, Z\right)= & \eta(X) g(\phi Y, Z)-\eta(Y) g(\phi X, Z)-2 \eta(Z) g(\phi X, Y) \\
& +g(X, A N) g(A Y, Z)-g(Y, A N) g(A X, Z) \\
& +g(X, A \xi) g(J A Y, Z)-g(Y, A \xi) g(J A X, Z) . \tag{4.2}
\end{align*}
$$

Since we have assumed the real hypersurface M in Q^{m} is Hopf, then $S \xi=\alpha \xi$. This gives

$$
\left(\nabla_{X} S\right) \xi=(X \alpha) \xi+\alpha \phi S X-S \phi S X .
$$

From this, let us put $Y=\xi$ in (4.2) and use $g(A \xi, N)=0$. We see that

$$
\begin{align*}
& 2 g((X \alpha) \xi+\alpha \phi S X-S \phi S X, Z)=-g(\phi X, Z)+g(X, A N) g(A \xi, Z) \tag{4.3}\\
& \quad+g(X, A \xi) g(J A \xi, Z)-g(\xi, A \xi) g(J A X, Z) \tag{4.4}
\end{align*}
$$

Here, let us take $X=\xi$ in (4.3) and also use $g(\xi, A N)=0$. We have

$$
2(\xi \alpha) \eta(Z)=g(\xi, A \xi) g(J A \xi, Z)-g(\xi, A \xi) g(J A \xi, Z)=0
$$

From this we get $\xi \alpha=0$. Then the derivative $Y \alpha$ in Sect. 3 becomes

$$
Y \alpha=2 g(Y, A N) g(\xi, A \xi)
$$

From this, together with (4.3), it follows that

$$
\begin{align*}
& 2 g(2 g(X, A N) g(\xi, A \xi) \xi+\alpha \phi S X-S \phi S X, Z)=-g(\phi X, Z)+g(X, A N) g(A \xi, Z) \\
& +g(X, A \xi) g(J A \xi, Z)-g(\xi, A \xi) g(J A X, Z) . \tag{4.5}
\end{align*}
$$

Then by putting $Z=\xi$ into (4.3), we have

$$
\begin{align*}
4 g(X, A N) g(\xi, A \xi)= & g(X, A N) g(A \xi, \xi)+g(X, A \xi) g(J A \xi, \xi) \\
& -g(\xi, A \xi) g(J A X, \xi) \\
= & 2 g(X, A N) g(A \xi, \xi) \tag{4.6}
\end{align*}
$$

Since $g(A \xi, N)=0,(4.6)$ gives

$$
g(A \xi, \xi) g(A N, X)=0
$$

Then we have $g(A \xi, \xi)=0$ or $(A N)^{\mathrm{T}}=0$, where $(A N)^{\mathrm{T}}$ denotes the tangential part of the vector $A N$.

We will use the result of this discussion to prove the following
Lemma 4.1. Let M be a Hopf real hypersurface in $Q^{m}, m \geq 3$, with Killing shape operator. Then the unit normal vector field N is singular, that is, N is \mathfrak{A}-isotropic or \mathfrak{A}-principal.

Proof. In the above discussion, let us consider the first case $g(A \xi, \xi)=0$. Then it implies that

$$
0=g(A \xi, \xi)=g(A J N, J N)=-g(J A N, J N)=-g(A N, N)
$$

If we insert $N=\cos t Z_{1}+\sin t J Z_{2}$ for $Z_{1}, Z_{2} \in V(A)$ into the above equation, we have $\cos ^{2} t-\sin ^{2} t=0$. By section 2, we have $t=\frac{\pi}{4}$, that is, $N=$ $\frac{1}{\sqrt{2}}(X+J Y)$ for some $X, Y \in V(A)$. So the unit normal N is \mathfrak{A}-isotropic.

Next we consider the case that $(A N)^{\mathrm{T}}=0$. Then $A N=(A N)^{\mathrm{T}}+$ $g(A N, N) N=g(A N, N) N$. So it follows that

$$
N=A^{2} N=g(A N, N) A N=g^{2}(A N, N) N
$$

So $g(A N, N)= \pm 1$ gives that $A N= \pm N$. That is, the unit normal N is \mathfrak{A}-principal.

Due to Lemma 4.1, the classification of Hopf real hypersurfaces with Killing shape operator in Q^{m} splits into two cases, depending on the unit normal N is either \mathfrak{A}-principal or \mathfrak{A}-isotropic. We will study these two cases in the following two sections. In Sect. 5, we will obtain the classification of Hopf real hypersurfaces in Q^{m} with Killing shape operator and \mathfrak{A}-isotropic unit
normal vector field and in Sect. 6 a non-existence of Hopf real hypersurfaces with Killing shape operator and \mathfrak{A}-principal vector field will be proved.

5. Proof of Main Theorem with \mathfrak{A}-Isotropic Unit Normal

In this section, let us assume that the unit normal vector field N is \mathfrak{A} isotropic. The normal vector field N can be written

$$
N=\frac{1}{\sqrt{2}}\left(Z_{1}+J Z_{2}\right)
$$

for $Z_{1}, Z_{2} \in V(A)$, where $V(A)$ denotes the (+1)-eigenspace of the complex conjugation $A \in \mathfrak{A}$. Then it follows that

$$
A N=\frac{1}{\sqrt{2}}\left(Z_{1}-J Z_{2}\right), A J N=-\frac{1}{\sqrt{2}}\left(J Z_{1}+Z_{2}\right), \text { and } J N=\frac{1}{\sqrt{2}}\left(J Z_{1}-Z_{2}\right) .
$$

From this, together with (3.3) and the anti-commuting property $A J=-J A$, it follows that
$g(\xi, A \xi)=g(J N, A J N)=0, \quad g(\xi, A N)=0$ and $g(A N, N)=0$.
Now (4.3) gives the following for any $X, Z \in T_{z} M, z \in M$

$$
\begin{align*}
2 g(\alpha \phi S X-S \phi S X, Z) & =-g(\phi X, Z)+g(X, A N) g(A \xi, Z)+g(X, A \xi) g(J A \xi, Z) \\
& =-g(\phi X, Z)+g(X, A N) g(A \xi, Z)-g(X, A \xi) g(A N, Z) . \tag{5.1}
\end{align*}
$$

Since $A \xi, A N \in T_{x} M, x \in M$, it implies

$$
\begin{equation*}
2(\alpha \phi S X-S \phi X)=-\phi X+g(X, A N) A \xi-g(X, A \xi) A N . \tag{5.2}
\end{equation*}
$$

On the other hand, from the formula (5.6) of Suh [19] for a Hopf real hypersurface M with \mathfrak{A}-isotropic unit normal N

$$
\begin{equation*}
2 S \phi S X=\alpha(S \phi+\phi S) X+2 \phi X-2 g(X, A N) A \xi+2 g(X, A \xi) A N \tag{5.3}
\end{equation*}
$$

Then by virtue of (5.2) and (5.3), we have

$$
\begin{equation*}
-2 S \phi S X=\alpha S \phi X-3 \alpha \phi S X . \tag{5.4}
\end{equation*}
$$

We know that the tangent space $T_{z} M, z \in M$ is decomposed as follows:

$$
T_{z} M=[\xi] \oplus[A \xi, A N] \oplus \mathcal{Q},
$$

where $\mathcal{C} \ominus \mathcal{Q}=\mathcal{Q}^{\perp}=\operatorname{Span}[A \xi, A N]$.
Lemma 5.1. Let M be a Hopf real hypersurface in the complex quadric Q^{m}, $m \geq 3$, with \mathfrak{A}-isotropic unit normal vector field. Then

$$
S A N=0, \quad \text { and } \quad S A \xi=0 .
$$

Proof. Let us denote by $\mathcal{C} \ominus \mathcal{Q}=\mathcal{Q}^{\perp}=\operatorname{Span}[A \xi, A N]$. Since N is \mathfrak{A}-isotropic, $g(A N, N)=0$ and $g(A \xi, \xi)=0$. By differentiating $g(A N, N)=0$ and using $\left(\bar{\nabla}_{X} A\right) Y=q(X) J A Y$ and the equation of Weingarten, we know that

$$
\begin{aligned}
0 & =g\left(\bar{\nabla}_{X}(A N), N\right)+g\left(A N, \bar{\nabla}_{X} N\right) \\
& =g(q(X) J A N-A S X, N)-g(A N, S X) \\
& =-2 g(A S X, N) \\
& =-2 g(X, S A N)
\end{aligned}
$$

Then $S A N=0$. Moreover, by differentiating $g(A \xi, N)=0$ and using $g(A N, N)=0$, we have the following formula

$$
\begin{aligned}
0 & =g\left(\bar{\nabla}_{X}(A \xi), N\right)+g\left(A \xi, \bar{\nabla}_{X} N\right) \\
& =g(q(X) J A \xi+A(\phi S X+g(S X, \xi) N), N)-g(S A \xi, X) \\
& =-2 g(S A \xi, X)
\end{aligned}
$$

for any $X \in T_{z} M, z \in M$, where in the third equality we have used $\phi A N=$ $J A N=-A J N=A \xi$. Then it follows that

$$
S A \xi=0
$$

It completes the proof of our assertion.
By Lemma 5.1 we know that the distribution \mathcal{Q}^{\perp} for a Hopf real hypersurface M in Q^{m} is invariant by the shape operator S, so the distribution \mathcal{Q} is also S-invariant. From this fact, we may consider a principal curvature vector $X \in \mathcal{Q}$ such that $S X=\lambda X$. Then (5.4) gives

$$
(2 \lambda+\alpha) S \phi X=3 \alpha \lambda \phi X
$$

If $2 \lambda+\alpha=0$ holds, then this equation would imply $3 \alpha \lambda \phi X=0$, and therefore, as $\alpha \neq 0$ and $\lambda=-\frac{\alpha}{2} \neq 0$, we would have $\phi X=0$. But this is impossible for $X \in \mathcal{Q}$. Thus we have $2 \lambda+\alpha \neq 0$ and hence we obtain

$$
\begin{equation*}
S \phi X=\frac{3 \alpha \lambda}{2 \lambda+\alpha} \phi X \tag{5.5}
\end{equation*}
$$

For $X \in \mathcal{Q}$, we know that $g(X, A N)=g(X, A \xi)=0$. So (5.3) gives the following

$$
\begin{equation*}
2 S \phi S X=\alpha(S \phi+\phi S) X+2 \phi X \tag{5.6}
\end{equation*}
$$

That is, for $X \in \mathcal{Q}$ such that $S X=\lambda X$ the formula (5.6) yields

$$
\begin{equation*}
2 \lambda S \phi X=\alpha S \phi X+(\alpha \lambda+2) \phi X \tag{5.7}
\end{equation*}
$$

If $\alpha=2 \lambda$, we should have $2\left(\lambda^{2}+1\right) \phi X=0$, which is impossible. Then we get $S \phi X=\mu \phi X$ with

$$
\begin{equation*}
\mu=\frac{\alpha \lambda+2}{2 \lambda-\alpha} . \tag{5.8}
\end{equation*}
$$

Then (5.5) and (5.8) give

$$
\frac{\alpha \lambda+2}{2 \lambda-\alpha} \phi X=\frac{3 \alpha \lambda}{2 \lambda+\alpha} \phi X
$$

From this, any principal curvatures λ and μ of the distribution \mathcal{Q} satisfy the following quadratic equation

$$
\begin{equation*}
2 \alpha \lambda^{2}-2\left(\alpha^{2}+1\right) \lambda-\alpha=0 \tag{5.9}
\end{equation*}
$$

The solutions become the following constant principal curvatures given by

$$
\begin{equation*}
\lambda, \mu=\frac{\left(\alpha^{2}+1\right) \pm \sqrt{\left(\alpha^{2}+1\right)^{2}+2 \alpha^{2}}}{2 \alpha} \tag{5.10}
\end{equation*}
$$

because the Reeb function α is constant for \mathfrak{A}-isotropic unit normal N (see [18]). Here we note that the Reeb function α can not vanish. If the function α identically vanishes, then (5.9) gives $\lambda=0$. From this, together with (5.7), we have $\phi X=0$, which implies a contradiction.

From this, together with Lemma 5.1, the expression of the shape operator becomes the following

$$
S=\left[\begin{array}{ccccccccc}
\alpha & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \lambda & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & \lambda & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & \mu & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & \mu
\end{array}\right]
$$

where the principal curvatures λ and μ are given by (5.10) with multiplicities $m-2$ respectively. If both had different multiplicities, then $\left(\alpha^{2}+1\right)^{2}+2 \alpha^{2}=0$, which is impossible.

Summing up the above discussions, we give the following
Theorem 5.2. Let M be a real hypersurface in the complex quadric Q^{m} with \mathfrak{A}-isotropic unit normal vector field. Then M has 4 distinct constant principal curvatures given by

$$
\begin{gathered}
\alpha \neq 0, \beta=\gamma=0, \lambda=\frac{\left(\alpha^{2}+1\right)+\sqrt{\left(\alpha^{2}+1\right)^{2}+2 \alpha^{2}}}{2 \alpha}, \text { and } \\
\mu=\frac{\left(\alpha^{2}+1\right)-\sqrt{\left(\alpha^{2}+1\right)^{2}+2 \alpha^{2}}}{2 \alpha}
\end{gathered}
$$

with corresponding principal curvature spaces respectively $T_{\alpha}=[\xi], T_{\beta}=[A N], T_{\gamma}=[A \xi], \phi\left(T_{\lambda}\right)=T_{\mu}$, and $\operatorname{dim} T_{\lambda}=\operatorname{dim} T_{\mu}=m-2$.

6. Proof of Main Theorem with \mathfrak{A}-Principal Normal Vector Field

In this section, let us consider a real hypersurface M in Q^{m} with Killing shape operator for the case that the unit normal N is \mathfrak{A}-principal. Choose
$A \in \mathfrak{A}$ so that $N \in V(A)$ holds. Then the Killing shape operator condition gives that

$$
2 g(\{\alpha \phi S X-S \phi S X\}, Z)=-g(\phi X, Z)+g(\phi A X, Z)
$$

where we have used $g(\xi, A \xi)=-1$ and $J A X=\phi A X+\eta(A X) N$. It follows that

$$
\begin{equation*}
2(\alpha \phi S X-S \phi S X)=-\phi X+\phi A X \tag{6.1}
\end{equation*}
$$

Since the unit normal vector field N is \mathfrak{A}-principal, $A \xi=-\xi$. Then differentiating this and using Gauss equation, we get

$$
\begin{equation*}
\nabla_{X}(A \xi)=\bar{\nabla}_{X}(A \xi)-g(S X, A \xi) N=-q(X) N+\alpha \eta(X) N \tag{6.2}
\end{equation*}
$$

where q denotes a certain 1-form defined on M as in the introduction. From this, together with $\nabla_{X}(A \xi)=-\nabla_{X} \xi=-\phi S X$, we have

$$
\phi X=\phi A X
$$

This gives

$$
A X=X-2 \eta(X) \xi
$$

Then we have

$$
\begin{align*}
\operatorname{Tr} A & =g(A N, N)+\sum_{i=1}^{2 m-1} g\left(A e_{i}, e_{i}\right) \\
& =\sum_{i=1}^{2 m-1} g\left(e_{i}-2 \eta\left(e_{i}\right) \xi, e_{i}\right) \\
& =2(m-1) . \tag{6.3}
\end{align*}
$$

But $\operatorname{Tr} A=0$, because $T_{z} Q^{m}=V(A) \oplus J V(A)$, where $V(A)=\left\{X \in T_{z} Q^{m} \mid\right.$ $A X=X\}$ and $J V(A)=\left\{X \in T_{z} Q^{m} \mid A X=-X\right\}$. This gives us a contradiction. So we obtain the

Theorem 6.1. There does not exist any Hopf real hypersurface in the complex quadric Q^{m} with Killing shape operator if the unit normal vector field is \mathfrak{A} principal.

Summing up all of discussions including Sects. 4 and 5, by Lemma 4.1, Theorems 5.2 and 6.1, we give a complete proof of our Main Theorem 1 in the introduction.

Acknowledgements

The present authors would like to express their deep gratitude to the referee for his/her wonderful comments throughout all of our manuscript.

References

[1] Blair, D.E.: Almost contact manifolds with Killing structure tensors. Pac. J. Math. 39, 285-292 (1971)
[2] Jeong, I., Kim, H.J., Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannians with parallel normal Jacobi operator. Publ. Math. Debr. 76, 203-218 (2010)
[3] Jeong, I., Machado, C.J.G., Pérez, J.D., Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannians with \mathfrak{D}^{\perp}-parallel structure Jacobi operator. Int. J. Math. 22, 655-673 (2011)
[4] Jeong, I., Machado, C.J.G., Pérez, J.D., Suh, Y.J.: D-parallelism of normal and structure Jacobi operators for hypersurfaces in complex two-plane Grassmannians. Ann. Mat. Pura Appl. 193, 591-608 (2014)
[5] Klein, S.: Totally geodesic submanifolds in the complex quadric. Differ. Geom. Appl. 26, 79-96 (2008)
[6] Klein, S.: Totally geodesic submanifolds of the complex quadric and the quaternionic 2-Grassmannians. Trans. Am. Math. Soc. 361, 4927-4967 (2009)
[7] Klein, S.: Reconstructing the geometric structure of a Riemannian symmetric space from its Satake diagram. Geom. Dedic. 138, 25-50 (2009)
[8] Klein, S.: Totally geodesic submanifolds of the exceptional Riemannian symmetric spaces of rank 2. Osaka J. Math. 47, 1077-1157 (2010)
[9] Kimura, M.: Real hypersurfaces and complex submanifolds in complex projective space. Trans. Am. Math. Soc. 296, 137-149 (1986)
[10] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. II (Wiley classics library edition). Wiley, New York (1996)
[11] Pérez, J.D., Suh, Y.J.: Real hypersurfaces of quaternionic projective space satisfying $\nabla_{U_{i}} R=0$. Differ. Geom. Appl. 7, 211-217 (1997)
[12] Pérez, J.D., Suh, Y.J.: Certain conditions on the Ricci tensor of real hypersurfaces in quaternionic projective space. Acta Math. Hung. 91, 343-356 (2001)
[13] Reckziegel, H.: On the geometry of the complex quadric. In: Geometry and Topology of Submanifolds VIII. World Scientific Publishing, Brussels/Nordfjordeid, River Edge, pp. 302-315 (1995)
[14] Smyth, B.: Differential geometry of complex hypersurfaces. Ann. Math. 85, 246-266 (1967)
[15] Suh, Y.J.: Real hypersurfaces of type B in complex two-plane Grassmannians. Monatsh. Math. 147, 337-355 (2006)
[16] Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannians with parallel Ricci tensor. Proc. R. Soc. Edinb. A. 142, 1309-1324 (2012)
[17] Suh, Y.J.: Hypersurfaces with isometric Reeb flow in complex hyperbolic twoplane Grassmannians. Adv. Appl. Math. 50, 645-659 (2013)
[18] Suh, Y.J.: Real hypersurfaces in the complex quadric with Reeb parallel shape operator. Int. J. Math. 25, 1450059 (2014)
[19] Suh, Y.J.: Real hypersurfaces in the complex quadric with parallel Ricci tensor. Adv. Math. 281, 886-905 (2015)
[20] Suh, Y.J.: Real hypersurfaces in the complex quadric with harmonic curvature. J. Math. Pures Appl. 106, 393-410 (2016)
[21] Tachibana, S.: On Killing tensors in a Riemannian space. Tohoku Math. J. 20, 257-264 (1968)

```
Juan de Dios Pérez
Department of Geometry and Topology
University of Granada
18071 Granada
Spain
e-mail: jdperez@ugr.es
Imsoon Jeong
Division of Future Capability Education
Pai Chai University
Daejeon 35345
Republic of Korea
e-mail: isjeong@pcu.ac.kr
Junhyung Ko and Young Jin Suh
Department of Mathematics and Research Institute of Real and Complex Manifolds, College of Natural Sciences
Kyungpook National University
Daegu 41566
Republic of Korea
e-mail: yjsuh@knu.ac.kr
Junhyung Ko
e-mail: biryu111@naver.com
```

Received: May 27, 2017.
Revised: November 14, 2017.
Accepted: December 1, 2017.

[^0]: This work was supported by Grant Project no. NRF-2015-R1A2A1A-01002459 from National Research Foundation of Korea. J. de Dios Pérez was supported by MCT-FEDER Project MTM-2013-47828-C2-1-P, I. Jeong, and J. Ko were supported by NRF-2017R1A2B4005317, and Y. J. Suh by Bokhyun Research 2017.

